Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

IUCrJ. 2015 Jan 27;2(Pt 2):168-76. doi: 10.1107/S2052252514026487. eCollection 2015 Mar 1.

Abstract

Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR) at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

Keywords: XFEL; bacteriorhodopsin; lipidic cubic phases; protein crystallography.