Despite dedicated efforts to identify interventions to delay aging, most promising interventions yielding dramatic life-span extension in animal models of aging are often ineffective when translated to clinical trials. This may be due to differences in primary outcomes between species and difficulties in determining the optimal clinical trial paradigms for translation. Measures of physical function, including brief standardized testing batteries, are currently being proposed as biomarkers of aging in humans, are predictive of adverse health events, disability, and mortality, and are commonly used as functional outcomes for clinical trials. Motor outcomes are now being incorporated into preclinical testing, a positive step toward enhancing our ability to translate aging interventions to clinical trials. To further these efforts, we begin a discussion of physical function and disability assessment across species, with special emphasis on mice, rats, monkeys, and man. By understanding how physical function is assessed in humans, we can tailor measurements in animals to better model those outcomes to establish effective, standardized translational functional assessments with aging.
Keywords: Animal models; Behavior; Physical function; Translational.
© The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].