Purpose: This study was aimed at exploring the use of liposomes to deliver aquated cisplatin (ACP), a metabolite of CDDP, with increased potency and toxicity. Three liposomal formulations were compared for delivery of ACP to a multidrug resistant tumor.
Methods: Three different liposomes (DMPC, DPPC and DSPC as the main lipid components) were loaded with ACP by the thin-film hydration method. In vitro drug release was assessed over 72 h at 37°C in PBS. The pharmacokinetics of free CDDP and the three ACP liposomes was determined using ICP-AES and their efficacy against EMT6-AR1 multidrug resistant murine breast tumor was compared.
Results: The DSPC formulation, composed of a C18 acyl chain lipid, exhibited the slowest drug release (~2%) after 72 h at 37°C, compared to the other two formulations with decreased carbon chain lengths (C16 and C14; 7 and 25% release respectively). The pharmacokinetic profile was improved with all liposomal formulations relative to free CDDP, with clearance reduced by 500-fold for DSPC, 200-fold for DPPC and 130-fold for DMPC. The DSPC formulation displayed the highest drug accumulation in the tumor with 2-fold, 3-fold and 100-fold increases compared to DPPC, DMPC and free CDDP respectively. The DSPC formulation significantly inhibited the EMT6-AR1 tumor growth by ~90%, while the other formulations displayed no statistically significant improved activity compared to saline.
Conclusion: These results suggest that the DSPC liposomal formulation is a promising formulation for MDR tumor therapy over DMPC and DPPC formulations and free drug.
Keywords: aquated cisplatin; cisplatin; long circulating liposome; multidrug resistant tumor.