The traditional chamber-based microbial fuel cell (MFC) often has the disadvantages of high ohmic resistance, large volume requirements, and delayed start-up. In this study, paper-shaped MFCs utilizing a porous carbon anode, a solid Ag2 O-coated carbon cathode, and a micrometer-thin porous polyvinylidene fluoride (PVDF) separator are investigated to address the classical MFC issues. The Ag2 O-coated cathode has a low overpotential of 0.06 V at a reducing current of 1 mA compared to a Pt-air cathode. Rapid inoculation by filtration results in an instantaneous power density of 92 mW m(-2) with an internal resistance of 162 Ω. Integrated current over the first 30 min of operation has a linear relation with microbial concentration.
Keywords: biosensing; microbial fuel cells; separator; silver; single-use.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.