In Philadelphia-positive chronic myeloid leukemia (CML), imatinib resistance frequently emerges because of point mutations in the ABL1 kinase domain, but may also be the consequence of uncontrolled upstream signaling. Recently, the heteromeric transcription factor GA-binding protein (GABP) was found to promote CML-like myeloproliferative disease in mice. In a cohort of 70 CML patients, we found that expression of the GABP α subunit (GABPα) is positively correlated to the BCR-ABL1/ABL1 ratio. Moreover, significantly higher GABPα expression was detected in blast crisis than in chronic phase CML after performing data mining on 91 CML patients. In functional studies, imatinib sensitivity is enhanced after GABPα knockdown in tyrosine kinase inhibitors (TKI)-sensitive K-562, as well as by overexpression of a deletion mutant in TKI-resistant NALM-1 cells. Moreover, in K-562 cells, GABP-dependent expression variations of PRKD2 and RAC2, relevant signaling mediators in CML, were observed. Notably, protein kinase D2 (Prkd2) was reported to be a GABP target gene in mice. In line with this, we detected a positive correlation between GABPA and PRKD2 expression in primary human CML, indicating that the effects of GABP are mediated by PRKD2. These findings illustrate an important role for GABP in disease development and imatinib sensitivity in human CML.
Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.