Maleimides are often used to covalently attach drugs to cysteine thiols for production of antibody-drug conjugates (ADCs). However, ADCs formed with traditional N-alkyl maleimides have variable stability in the bloodstream leading to loss of drug. Here, we report that N-aryl maleimides form stable antibody conjugates under very mild conditions while also maintaining high conjugation efficiency. Thiol-maleimide coupling and ADC stabilization via thiosuccinimide hydrolysis were accelerated by addition of N-phenyl or N-fluorophenyl groups to the ring-head nitrogen. Cysteine-linked ADCs prepared with N-aryl maleimides exhibited less than 20% deconjugation in both thiol-containing buffer and serum when incubated at 37 °C over a period of 7 days, whereas the analogous ADCs prepared with N-alkyl maleimides showed 35-67% deconjugation under the same conditions. ADCs prepared with the anticancer drug N-phenyl maleimide monomethyl-auristatin-E (MMAE) maintained high cytotoxicity following long-term exposure to serum whereas the N-alkyl maleimide MMAE ADC lost potency over time. These data demonstrate that N-aryl maleimides are a convenient and flexible platform to improve the stability of ADCs through manipulation of functional groups attached to the maleimide ring-head nitrogen.
Keywords: Antibody-drug conjugate; Maleimide; Retro-Michael reaction; Serum stability; Thiol conjugation; Thiosuccinimide hydrolysis.
Copyright © 2015 Elsevier B.V. All rights reserved.