Arterial spin-labeled (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) have been proposed to quantitatively assess vascularity in renal cell carcinoma (RCC). However, there are intrinsic differences between these 2 imaging methods, such as the relative contribution of vascular permeability and blood flow to signal intensity for DCE MRI. We found a correlation between ASL perfusion and the DCE-derived volume transfer constant and rate constant parameters in renal masses > 2 cm in size and these measures correlated with microvessel density in clear cell RCC.
Background: The objective of this study was to investigate potential correlations between perfusion using arterial spin-labeled (ASL) magnetic resonance imaging (MRI) and dynamic contrast-enhanced (DCE) MRI-derived quantitative measures of vascularity in renal masses > 2 cm and to correlate these with microvessel density (MVD) in clear cell renal cell carcinoma (ccRCC).
Patients and methods: Informed written consent was obtained from all patients before imaging in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, prospective study. Thirty-six consecutive patients scheduled for surgery of a known renal mass > 2 cm underwent 3T ASL and DCE MRI. ASL perfusion measures (PASL) of mean, peak, and low perfusion areas within the mass were correlated to DCE-derived volume transfer constant (K(trans)), rate constant (Kep), and fractional volume of the extravascular extracellular space (Ve) in the same locations using a region of interest analysis. MRI data were correlated to MVD measures in the same tumor regions in ccRCC. Spearman correlation was used to evaluate the correlation between PASL and DCE-derived measurements, and MVD. P < .05 was considered statistically significant.
Results: Histopathologic diagnosis was obtained in 36 patients (25 men; mean age 58 ± 12 years). PASL correlated with K(trans) (ρ = 0.48 and P = .0091 for the entire tumor and ρ = 0.43 and P = .03 for the high flow area, respectively) and Kep (ρ = 0.46 and P = .01 for the entire tumor and ρ = 0.52 and P = .008 for the high flow area, respectively). PASL (ρ = 0.66; P = .0002), K(trans) (ρ = 0.61; P = .001), and Kep (ρ = 0.64; P = .0006) also correlated with MVD in high and low perfusion areas in ccRCC.
Conclusion: PASL correlated with the DCE-derived measures of vascular permeability and flow, K(trans) and Kep, in renal masses > 2 cm in size. Both measures correlated to MVD in clear cell histology.
Keywords: Angiogenesis; Arterial spin labeling; Dynamic contrast-enhanced MRI; Kidney cancers; Microvessel density.
Copyright © 2016 Elsevier Inc. All rights reserved.