Background/objectives: Obese adipose tissue, especially the visceral depot, exhibits altered production of several molecules that could have a role on the initiation/promotion of breast cancer development. The aim of this work was to evaluate the effect of excess adipose tissue and its secreted factors on the expression of genes involved in the early steps of tumor promotion on the mammary gland.
Subjects and methods: Carcinogenesis-related gene expression was evaluated in mammary gland tissue from female diet-induced obese (DIO) Sprague-Dawley rats and circulating leukocytes isolated from a group of breast cancer diagnosed and non-diagnosed obese women and compared with their normal weight counterparts. In addition, the human non-tumoral mammary epithelial cell line MCF10A was treated in vitro with the visceral (retroperitoneal adipose tissue (RPAT)) or subcutaneous adipose tissue (SAT) secretome and with rising concentrations of the lipid peroxidation by-product 4-hydroxynonenal (4-HNE).
Results: DIO rats were classified as susceptible to DIO (DIO-S) or partially resistant to DIO (DIO-R) according to the maximum fat mass gain of the lean group as a cut-off. As compared with lean and DIO-R, the DIO-S group showed a higher fat mass and lower lean mass. The anatomical characteristic of DIO-S was correlated with differential expression of cellular proliferation (ALDH3A1 and MYC) and antioxidant and DNA protection (GSTM2, SIRT1), and tumor suppression (TP53, PTEN, TGFB1) genes. Remarkably, this carcinogenesis-related gene expression pattern was reproduced in MCF10A treated with the RPAT secretome from DIO-S rats and with the lipid peroxidation by-product 4-HNE. Moreover, this pattern was also detected in leukocytes from obese women compared with normal weight women without evidence of breast cancer.
Conclusions: Lipid peroxides secreted by the obese visceral adipose tissue could be among the relevant factors that promote changes involved in the early steps of tumor development in mammary gland. These changes can be detected even before histological alterations and in circulating leukocytes.