Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure-activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-β-D-ribose 2'-oxidase

Bioorg Med Chem. 2015 Dec 15;23(24):7694-710. doi: 10.1016/j.bmc.2015.11.017. Epub 2015 Nov 18.

Abstract

We report the discovery of benzothiazoles, a novel anti-mycobacterial series, identified from a whole cell based screening campaign. Benzothiazoles exert their bactericidal activity against Mycobacterium tuberculosis (Mtb) through potent inhibition of decaprenylphosphoryl-β-d-ribose 2'-oxidase (DprE1), the key enzyme involved in arabinogalactan synthesis. Specific target linkage and mode of binding were established using co-crystallization and protein mass spectrometry studies. Most importantly, the current study provides insights on the utilization of systematic medicinal chemistry approaches to mitigate safety liabilities while improving potency during progression from an initial genotoxic hit, the benzothiazole N-oxides (BTOs) to the lead-like AMES negative, crowded benzothiazoles (cBTs). These findings offer opportunities for development of safe clinical candidates against tuberculosis. The design strategy adopted could find potential application in discovery of safe drugs in other therapy areas too.

Keywords: AMES; Antimycobacterial; Benzothiazoles; DprE1; Genotoxic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcohol Oxidoreductases / antagonists & inhibitors
  • Alcohol Oxidoreductases / metabolism*
  • Antitubercular Agents / chemistry*
  • Antitubercular Agents / pharmacology*
  • Bacterial Proteins / antagonists & inhibitors
  • Bacterial Proteins / metabolism*
  • Benzothiazoles / chemistry*
  • Benzothiazoles / pharmacology*
  • Drug Design
  • Humans
  • Molecular Docking Simulation
  • Mycobacterium tuberculosis / drug effects*
  • Mycobacterium tuberculosis / enzymology*
  • Structure-Activity Relationship
  • Tuberculosis / drug therapy
  • Tuberculosis / microbiology

Substances

  • Antitubercular Agents
  • Bacterial Proteins
  • Benzothiazoles
  • Alcohol Oxidoreductases
  • DprE1 protein, Mycobacterium tuberculosis
  • benzothiazole