Background: Mosquito-borne viruses (moboviruses) are of growing importance in many countries of Europe. In Romania and especially in the Danube Delta Biosphere Reserve (DDBR), mosquito and mobovirus surveillance are not performed on a regular basis. However, this type of study is crucially needed to evaluate the risk of pathogen transmission, to understand the ecology of emerging moboviruses, or to plan vector control programmes.
Methods: We initiated a longitudinal mosquito surveillance study with carbon dioxide-baited Heavy Duty Encephalitis Vector Survey traps at four sampling sites to analyse the spatio-temporal pattern of the (i) mosquito species composition and diversity, (ii) functional groups of mosquitoes (oviposition sites, overwintering stage, and number of generations), and (iii) the occurrence of potential West Nile virus (WNV) vectors.
Results: During 2014, a total of 240,546 female mosquitoes were collected. All species were identified using morphological characteristics and further confirmed by mitochondrial cytochrome c oxidase subunit I (COI) gene analysis of selected specimens. The two most common taxa were Coquilettidia richiardii (40.9 %) and Anopheles hyrcanus (34.1 %), followed by Culex pipiens (sensu lato) (s.l.)/Cx. torrentium (7.7 %), Aedes caspius (5.7 %), Cx. modestus (4.0 %), An. maculipennis (s.l.) (3.9 %), and Ae. vexans (3.0 %). A further seven species were less common in the area studied, including two new records for Romania: An. algeriensis and Ae. hungaricus. Phylogenetic analysis of COI gene demonstrated the evolutionary relatedness of most species with specimens of the same species collected in other European regions, except Ae. detritus and An. algeriensis, which exhibited high genetic diversity. Due to the dominance of Cq. richiardii and An. hyrcanus (75 % of all collected specimens), the overall phenology and temporal pattern of functional groups basically followed the phenology of both species. A huge proportion of the mosquito population in the course of the entire sampling period can be classified as potential WNV vectors. With 40 % of all collected specimens, the most frequent species Cq. richiardii is probably the most important vector of WNV in the DDBR.
Conclusion: This is the first DNA-barcoding supported analysis of the mosquito fauna in the DDBR. The detection of two new species highlights the lack of knowledge about the mosquito fauna in Romania and in the DDBR in particular. The results provide detailed insights into the spatial-temporal mosquito species composition, which might lead to a better understanding of mobovirus activity in Romania and thus, can be used for the development of vector control programs.
Keywords: Aedes hungaricus; Anopheles algeriensis; Danube Delta Biosphere Reserve; Mitochondrial cytochrome c oxidase subunit I; Mosquito surveillance; Romania.