Early - intrauterine - environmental factors are linked to the development of cardiovascular disease in later life. Traditionally, these factors are considered to be maternal factors such as maternal under and overnutrition, exposure to toxins, lack of micronutrients, and stress during pregnancy. However, in the recent years, it became obvious that also paternal environmental factors before conception and during sperm development determine the health of the offspring in later life. We will first describe clinical observational studies providing evidence for paternal programming of adulthood diseases in progeny. Next, we describe key animal studies proving this relationship, followed by a detailed analysis of our current understanding of the underlying molecular mechanisms of paternal programming. Alterations of noncoding sperm micro-RNAs, histone acetylation, and targeted as well as global DNA methylation seem to be in particular involved in paternal programming of offspring's diseases in later life.