DNA within the cell is organized into higher-order structures characterized by negative supercoiling. Supercoiling is a property of any DNA molecule lacking ends capable of rotation. Parameters defining the properties of supercoiled DNA are significant for the description of the reactive state of DNA molecules. We have investigated whether physical and chemical DNA modifying agents alter the parameters describing the DNA tertiary structure. The variations in DNA tertiary structure of partially relaxed topoisomers obtained from plasmid DNA have been studied by one dimensional agarose gel electrophoresis, a technique allowing the measurement of alterations in the degree of supercoiling equivalent to fractions of superhelical turns. Unwinding angles of 8.5 degrees for pyrimidine dimers and of 8.5 degrees for acetyl-4-hydroxyaminoquinoline-I-oxide (Ac-4-HAQO) adducts have been determined by titrating for each topoisomers the number of damaged sites necessary to reduce the superhelical turns by one. Analogous unwinding was observed for topoisomers obtained from in vivo irradiated plasmid DNA. We have also shown that local alterations in DNA structure caused by UV irradiation inhibit bacterial type I DNA topoisomerases. In addition, we have demonstrated that E. coli mutants lacking DNA topoisomerase I are sensitive to UV light. The pronounced inhibition of DNA synthesis as well as the chromosome instability observed after UV irradiation of this strain, suggest that DNA topoisomerase I might be involved in those cellular responses elicited by the proximity of damaged bases to sites of active replication.(ABSTRACT TRUNCATED AT 250 WORDS)