A key step in the biosynthesis of the polyene polyketide ECO-0501 by Amycolatopsis orientalis ATCC 43491 is thought to involve oxidative decarboxylation of arginine or Nδ-methylarginine to the corresponding primary amide. This reaction is the centerpiece of a recently identified biosynthetic cassette that generates 4-guanidinobutyryl thioesters to serve as starter units for polyketide synthesis. We examined the reaction of ORF7, the predicted ECO-0501 biosynthetic decarboxylase, with arginine, and saw no evidence of decarboxylation. Instead, we observed exclusive amine oxidation to generate 2-oxoarginine, with a kcat/KM,Arg of 5.6×106M-1s-1, typical of values measured for physiological amino acid decarboxylases. In contrast, when ORF7 was incubated with Nδ-methylarginine, we observed exclusive decarboxylation to generate 4-(N1-methylguanidino)butyramide. These differing reactive pathways provide insight into the biosyntheses of guanidinobutyryl-derived polyketides and demonstrate the biosynthetic versatility of arginine-processing decarboxylases. In addition, it suggests that ORF7 may be an incisive model system for dissecting the determinants of flavoprotein-catalyzed oxidase and monooxygenase modes of reactivity.
Keywords: Biosynthesis; Flavoenzyme; Monoxygenase.
Copyright © 2016 Elsevier B.V. All rights reserved.