Interleukin-23 Secreted by Activated Macrophages Drives γδT Cell Production of Interleukin-17 to Aggravate Secondary Injury After Intracerebral Hemorrhage

J Am Heart Assoc. 2016 Oct 11;5(10):e004340. doi: 10.1161/JAHA.116.004340.

Abstract

Background: Neuroinflammation plays a key role in intracerebral hemorrhage (ICH)-induced secondary brain injury, but the specific roles of peripheral inflammatory cells such as macrophages and lymphocytes remain unknown. The purpose of this study was to explore the roles of macrophages, T lymphocytes, and the cytokines they secrete as potential targets for treating secondary brain injury after ICH.

Methods and results: Our results showed that peripheral macrophages and T lymphocytes successively infiltrated the brain, with macrophage counts peaking 1 day after ICH and T-lymphocyte counts peaking after 4 days. These peaks in cellular infiltration corresponded to increases in interleukin (IL)-23 and IL-17 expression, respectively. We found that hemoglobin from the hematoma activated IL-23 secretion by infiltrating macrophages by inducing the formation of toll-like receptor (TLR) 2/4 heterodimer. This increased IL-23 expression stimulated γδT-cell production of IL-17, which increased brain edema and neurologic deficits in the model mice as a proinflammatory factor. Finally, we found that sparstolonin B (SsnB) could ameliorate brain edema and neurologic deficits in ICH model mice via inhibition of TLR2/TLR4 heterodimer formation, and notably, SsnB interacted with myeloid differentiation factor 88 Arg196.

Conclusions: Together, our results reveal the importance of the IL-23/IL-17 inflammatory axis in secondary brain injury after ICH and thus provide a new therapeutic target for ICH treatment.

Keywords: IL‐17; IL‐23; TLR2; TLR4; intracerebral hemorrhage; lymphocyte; macrophage.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Edema / immunology*
  • Cerebral Hemorrhage / immunology*
  • Disease Models, Animal
  • Hemoglobins / immunology
  • Heterocyclic Compounds, 4 or More Rings / pharmacology
  • Interleukin-17 / immunology*
  • Interleukin-23 / immunology*
  • Macrophages / immunology*
  • Male
  • Mice
  • Receptors, Antigen, T-Cell, gamma-delta / metabolism
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism
  • Toll-Like Receptor 2 / drug effects
  • Toll-Like Receptor 2 / metabolism
  • Toll-Like Receptor 4 / drug effects
  • Toll-Like Receptor 4 / metabolism

Substances

  • Hemoglobins
  • Heterocyclic Compounds, 4 or More Rings
  • Interleukin-17
  • Interleukin-23
  • Receptors, Antigen, T-Cell, gamma-delta
  • Tlr2 protein, mouse
  • Tlr4 protein, mouse
  • Toll-Like Receptor 2
  • Toll-Like Receptor 4
  • sparstolonin B