The toxicity and bioconcentration of 3 pharmaceuticals (amitriptyline, iopamidol, and sertraline) were examined using multiple life stages (larval, juvenile, and adult) of the unionid mussel Lampsilis siliquoidea. The endpoints examined varied with life stage but included survival, behavior (algal clearance rate, filtering frequency), and oxidative stress. Iopamidol was not toxic at concentrations up to 101 mg/L. Sertraline was the most toxic chemical (50% lethal concentrations [LC50] and effect concentrations [EC50] = 0.02-0.04 mg/L), but exposure did not induce oxidative stress. Glochidia and juveniles were more sensitive than adult mussels. Algal clearance rate in juvenile mussels was the most sensitive endpoint assessed, similar to or lower than the LC50 values for glochidia. However, the compounds examined were not toxic at concentrations detected in the environment. The relative bioconcentration factors were sertraline > amitriptyline > iopamidol. These results suggest that glochidia toxicity could be a screening tool for rapidly assessing the toxicity of chemicals of concern to freshwater mussels. Environ Toxicol Chem 2017;36:1572-1583. © 2016 SETAC.
Keywords: Amitriptyline; Bioconcentration; Freshwater mussel; Iopamidol; Pharmaceuticals; Sertraline.
© 2016 SETAC.