A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of Human African Trypanosomiasis (HAT), led to the identification of N-(2-aminoethyl)-N-phenyl benzamides as a starting point for hit-to-lead medicinal chemistry. Eighty two analogues were prepared, which led to the identification of a set of highly potent N-(2-aminoethyl)-N-benzyloxyphenyl benzamides with the most potent compound 73 having an in vitro EC50=0.001μM. The compounds displayed drug-like properties when tested in a number of in vitro assays. Compound 73 was orally bioavailable and displayed good plasma and brain exposure in mice, cured 2 out of 3 mice infected with Trypanosoma brucei in acute model when dosed orally at 50mg/kg once per day for 4days. Given its potent antiparasitic properties and its ease of synthesis, compound 73 represents a potential lead for the development of drug to treat Human African Trypanosomiasis.
Keywords: Hit-to-lead optimization; Human African Trypanosomiasis; Trypanosoma brucei inhibitor; “Sleeping Sickness”.
Copyright © 2016 Elsevier Ltd. All rights reserved.