Cyanide is extremely toxic to organisms but difficult to detect in living biological specimens. Here, we report a new CN- sensing platform based on unmodified Au-Ag alloy nanoboxes that etch in the presence of this analyte, yielding a shift in plasmon frequency that correlates with the analyte concentration. Significantly, when combined with dark field microscopy, these particle probes can be used to measure CN- concentrations in HeLa cells and in vivo in Zebra fish embryos. The limit of detection (LOD) of the novel method is 1 nM (below the acceptable limit defined by the World Health Organization), and finite-difference time-domain (FDTD) calculations are used to understand the CN- induced spectral shifts.