We aimed to identify a panel of circulating plasma microRNAs that can predict EGFR mutation status and monitor epidermal growth factor receptor-tyrosine kinase inhibitor treatment in patients with non-small cell lung cancer. Microarrays were performed for the preliminary screening of dysregulated microRNAs in 9 EGFR mutation-positive patients versus healthy controls. MiR-107 was upregulated and miR-195 was downregulated in the exon 19 deletion versus wild-type group. The areas under the receiver operating characteristic curves for miR-107, miR-195, and a panel of these 2 microRNAs were 0.72, 0.75, and 0.74, with sensitivities and specificities of 64.7% and 76.6%, 71.8% and 69.1%, and 71.7% and 78.9%, respectively. MiR-122 was significantly upregulated in the p.L858R versus wild-type group. An area under the receiver operative characteristic curve of 0.75 suggests that miR-122 might be a specific biomarker for patients with the p.L858R mutation. In addition, dynamic changes in these 3 microRNAs were also found to correlate with responses to epidermal growth factor receptor-tyrosine kinase inhibitor treatment, indicating that circulating plasma microRNAs may represent potential biomarkers for monitoring epidermal growth factor receptor-tyrosine kinase inhibitor treatment. This study demonstrates the prospective application of circulating plasma microRNAs as potential non-invasive, convenient biomarkers for patients with EGFR-sensitive mutations.
Keywords: EGFR mutation status; circulating microRNA; epidermal growth factor receptor-tyrosine kinase inhibitor; non-small cell lung cancer; tumor marker.