Synthesis, characterization and antitumor activity of Ln(III) complexes with hydrazone Schiff base derived from 2-acetylpyridine and isonicotinohydrazone

Oncol Lett. 2017 Jun;13(6):4413-4419. doi: 10.3892/ol.2017.6018. Epub 2017 Apr 10.

Abstract

In the present study, two isostructural lanthanide (Ln)(III) complexes, namely Ln(HL)2(NO3)(CH3OH)2)·CH3OH, where Ln = La in complex 1 and Ce in complex 2, and hydrogen ligand (HL) = (E)-N'-[1-(2-pyridinyl)ethylidene]isonicotinohydrazone, have been isolated and characterized by elemental analysis, infrared spectra and single-crystal X-ray diffraction analysis. The results revealed that the acylhydrazone ligand HL in each complex was deprotonated as an anionic ligand and coordinated to the central La(III) ion via enolization of oxygen and nitrogen atoms. Furthermore, the antitumor effects and potential mechanisms of the two complexes were explored in the human lung cancer cell line A549 and in the human gastric cancer cell lines BGC823 and SGC7901. In the present study, the roles the two complexes on the proliferation and apoptosis of the above tumor cell lines were determined by MTT assay and Annexin V/propidium iodide flow cytometry, respectively. Furthermore, various apoptosis-associated key genes, including caspase 3, B cell lymphoma (Bcl)-2-associated X protein (Bax) and Bcl-2, were detected by western blotting to explore the possible antitumor mechanisms of the two complexes. The results revealed that the two complexes had comparable antitumor activities in terms of inhibiting proliferation and inducing apoptosis in tumor cell lines. The changes in the protein expression levels of caspase 3, Bax and Bcl-2 further verified the apoptosis-promoting mechanisms of the two complexes in tumor cell lines. These findings have a great potential in biomedical applications of novel Ln(III) complexes.

Keywords: Ln(III) complex; acylhydrazone; antitumor activity; apoptosis; isonicotinohydrazone.