Background: The risk factors for radiation pneumonitis (RP) in patients with chronic obstructive pulmonary disease (COPD) are unclear. Mean lung dose (MLD) and percentage of irradiated lung volume are common predictors of RP, but the most accurate dosimetric parameter has not been established. We hypothesized that the total lung volume irradiated without emphysema would influence the onset of RP.
Methods: We retrospectively evaluated 100 patients who received radiotherapy for lung cancer. RP was graded according to the Common Terminology Criteria for Adverse Events (version 4.03). We quantified low attenuation volume (LAV) using quantitative computed tomography analysis. The association between RP and traditional dosimetric parameters including MLD, volume of the lung receiving a dose of ≥2 Gy, ≥ 5 Gy, ≥ 10 Gy, ≥ 20 Gy, and ≥30 Gy, and counterpart measurements of the lung without LAV, were analyzed by logistic regression. We compared each dosimetric parameter for RP using multiple predictive performance measures including area under the receiver operating characteristic curve (AUC) and integrated discrimination improvement (IDI).
Results: Of 100 patients, RP of Grades 1, 2, 3, 4, and 5 was diagnosed in 24, 12, 13, 1, and 1 patients, respectively. Compared with traditional dosimetric parameters, counterpart measurements without LAV improved risk prediction of symptomatic RP. The ratio of the lung without LAV receiving ≥30 Gy to the total lung volume without LAV most accurately predicted symptomatic RP (AUC, 0.894; IDI, 0.064).
Conclusion: Irradiated lung volume without LAV predicted RP more accurately than traditional dosimetric parameters.
Keywords: Chronic obstructive pulmonary disease; Dosimetric parameter; Low attenuation volume; Lung cancer; Radiation pneumonitis.