Microenvironmental factors have a major impact on differentiation of embryonic stem cells (ESCs). Here, a novel phenomenon that size of ESC colonies has a significant regulatory role on stromal cells induced differentiation of ESCs to neural cells is reported. Using a robotic cell microprinting technology, defined densities of ESCs are confined within aqueous nanodrops over a layer of supporting stromal cells immersed in a second, immiscible aqueous phase to generate ESC colonies of defined sizes. Temporal protein and gene expression studies demonstrate that larger ESC colonies generate disproportionally more neural cells and longer neurite processes. Unlike previous studies that attribute neural differentiation of ESCs solely to interactions with stromal cells, it is found that increased intercellular signaling of ESCs significantly enhances neural differentiation. This study offers an approach to generate neural cells with improved efficiency for potential use in translational research.
Keywords: colony size; embryonic stem cells; neural differentiation; niche parameters; stromal cells.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.