Background: Interferon alpha (IFN-α) can potently reduce human immunodeficiency virus type 1 (HIV-1) replication in tissue culture and animal models, but may also modulate residual viral reservoirs that persist despite suppressive antiretroviral combination therapy. However, mechanisms leading to viral reservoir reduction during IFN-α treatment are unclear.
Methods: We analyzed HIV-1 gag DNA levels in CD4 T cells by digital droplet polymerase chain reaction and CD8 T-cell and natural killer (NK) cell phenotypes by flow cytometry in a cohort of antiretroviral therapy-treated HIV-1/hepatitis C virus-coinfected patients (n = 67) undergoing treatment for hepatitis C infection with pegylated IFN-α and ribavirin for an average of 11 months.
Results: We observed that IFN-α treatment induced a significant decrease in CD4 T-cell counts (P < .0001), in CD4 T-cell-associated HIV-1 DNA copies (P = .002) and in HIV-1 DNA copies per microliter of blood (P < .0001) in our study patients. Notably, HIV-1 DNA levels were unrelated to HIV-1-specific CD8 T-cell responses. In contrast, proportions of total NK cells, CD56brightCD16- NK cells, and CD56brightCD16+ NK cells were significantly correlated with reduced levels of CD4 T-cell-associated HIV-1 DNA during IFN-α treatment, especially when coexpressing the activation markers NKG2D and NKp30.
Conclusions: These data suggest that the reduction of viral reservoir cells during treatment with IFN-α is primarily attributable to antiviral activities of NK cells.