Purpose: [68Ga]Trishydroxypyridinone (THP)-prostate-specific membrane antigen (PSMA) is a novel tracer that can be labeled in one step by cold reconstitution of a kit with unprocessed generator eluate, targeting PSMA via the lysine-urea-glutamate (KuE) motif. The aim of this study was to evaluate the human imaging characteristics of [68Ga]THP-PSMA.
Procedures: [68Ga]THP-PSMA positron emission tomography (PET)/x-ray computed tomography (CT) was performed in 25 patients with biochemical recurrence after radical prostatectomy for prostate cancer. Urinary and biliary excretion and tumor lesion uptake were quantified using standardized uptake values (SUVs). Imaging characteristics were assessed in terms of non-target organ uptake, background activity, target-to-background ratios (TBRs) of tumor lesions, and frequency of bladder halo artifacts. Findings were compared to a matched cohort of 25 patients undergoing PET/CT with the established agent [68Ga]PSMA I&T.
Results: Physiologic uptake of [68Ga]THP-PSMA was significantly lower in salivary glands (P < 0.0001), liver (P < 0.0001), spleen (P < 0.0001), and kidneys (P < 0.0001) than with [68Ga]PSMA I&T. While biliary tracer excretion of [68Ga]THP-PSMA was negligible, urinary tracer excretion of [68Ga]THP-PSMA was fast, and significantly higher than for [68Ga]PSMA I&T, contributing to a higher frequency of bladder artifacts. Malignant lesion uptake of [68Ga]THP-PSMA assessed as either SUV or TBR was significantly lower than with [68Ga]PSMA I&T.
Conclusion: [68Ga]THP-PSMA yields suitable in vivo uptake characteristics. The simplified synthesis method for [68Ga]THP-PSMA may facilitate wider application and higher patient throughput with PSMA imaging. However, direct intraindividual comparison studies are needed to assess the relative performance of [68Ga]THP-PSMA vs other PSMA ligands in terms of clinical detection rate and image quality.
Keywords: Biodistribution; PET; Physiologic; THP; [68Ga]THP-PSMA.