This paper focuses on evaluating the ability and contribution of using backscatter intensity, texture, coherence, and color features extracted from Sentinel-1A data for urban land cover classification and comparing different multi-sensor land cover mapping methods to improve classification accuracy. Both Landsat-8 OLI and Hyperion images were also acquired, in combination with Sentinel-1A data, to explore the potential of different multi-sensor urban land cover mapping methods to improve classification accuracy. The classification was performed using a random forest (RF) method. The results showed that the optimal window size of the combination of all texture features was 9 × 9, and the optimal window size was different for each individual texture feature. For the four different feature types, the texture features contributed the most to the classification, followed by the coherence and backscatter intensity features; and the color features had the least impact on the urban land cover classification. Satisfactory classification results can be obtained using only the combination of texture and coherence features, with an overall accuracy up to 91.55% and a kappa coefficient up to 0.8935, respectively. Among all combinations of Sentinel-1A-derived features, the combination of the four features had the best classification result. Multi-sensor urban land cover mapping obtained higher classification accuracy. The combination of Sentinel-1A and Hyperion data achieved higher classification accuracy compared to the combination of Sentinel-1A and Landsat-8 OLI images, with an overall accuracy of up to 99.12% and a kappa coefficient up to 0.9889. When Sentinel-1A data was added to Hyperion images, the overall accuracy and kappa coefficient were increased by 4.01% and 0.0519, respectively.
Keywords: Hyperion; Landsat-8; Sentinel-1A; multi-feature; multi-sensor; random forest; urban area mapping.