Hepatocellular carcinoma (HCC) represents a serious public health challenge with few therapeutic options available to cancer patients.Wnt/β-catenin pathway is thought to play a significant role in HCC pathogenesis. In this study, we confirmed high frequency of CTNNB1 (β-catenin) mutations in two independent cohorts of HCC patients and demonstrated significant upregulation of β-catenin protein in the overwhelming majority of HCC patient samples, patient-derived xenografts (PDX) and established cell lines. Using genetic tools validated for target specificity through phenotypic rescue experiments, we went on to investigate oncogenic dependency on β-catenin in an extensive collection of human HCC cells lines. Our results demonstrate that dependency on β-catenin generally tracks with its activation status. HCC cell lines that harbored activating mutations in CTNNB1 or displayed elevated levels of non-phosphorylated (active) β-catenin were significantly more sensitive to β-catenin siRNA treatment than cell lines with wild-type CTNNB1 and lower active β-catenin. Finally, significant therapeutic benefit of β-catenin knock-down was demonstrated in established HCC tumor xenografts using doxycycline-inducible shRNA system. β-catenin downregulation and tumor growth inhibition was associated with reduction in AXIN2, direct transcriptional target of β-catenin, and decreased cancer cell proliferation as measured by Ki67 staining. Taken together, our data highlight fundamental importance of aberrant β-catenin signaling in the maintenance of oncogenic phenotype in HCC.
Keywords: cell proliferation; hepatocellular carcinoma; phenotypic rescue; siRNA; β-catenin.