Polymerase chain reaction (PCR) is an important molecular biology technique for in vitro amplification of nucleic acids. Reverse transcriptase quantitative PCR (RT-qPCR) and more recently reverse transcriptase digital droplet PCR (RT-ddPCR) have been developed for the quantification of nucleic acids. We developed an RT-ddPCR assay for the quantification of attenuated dengue virus serotype 2 nucleic acid and compared it with a routine RT-qPCR assay. While the routine RT-qPCR assay targets the NS5 gene, the E gene was selected for the optimization of the RT-ddPCR assay conditions. The specificity of the assay was demonstrated using the attenuated dengue virus serotype 2 alone and in the presence of the other three dengue serotypes. The results from both assays for 25 samples of the attenuated dengue virus serotype 2 were found to be comparable, with an R2 from the linear regression analysis of >0.98. A major advantage of the RT-ddPCR assay is that it allows quantification of nucleic acid, without the need of a standard curve. RT-ddPCR can be implemented for the absolute quantification of dengue vaccine virus nucleic acid during the vaccine manufacturing process.
Keywords: Dengue virus; Droplet digital PCR; RT-ddPCR; RT-qPCR; Viral quantification.
Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.