Hierarchically structured titania films, exhibiting interconnected foam-like nanostructures and large-scale channel-type superstructures, were achieved in an energy-saving way at low temperatures by a polymer template-assisted sol-gel synthesis in combination with a wet-imprinting process. The surface morphology was probed with scanning electron microscopy and atomic force microscopy, whereas the inner morphology was characterized with grazing incidence small-angle X-ray scattering measurements. Compared to the initial hybrid films, the titania films showed reduced structure sizes caused by removal of the polymer template. UV/Vis measurements showed an additional light-scattering effect at various angles of light incidence in the hierarchically structured titania films, which resulted in higher light absorption in the wet-imprinted active layer. To give proof of viability, the titania films were evaluated as photoanodes for dye-free hybrid solar cells. The dye-free layout allowed for low-cost fabrication, avoided problems related to dye bleaching, and was a more environmentally friendly alternative to using dyes. Under different angles of light incidence, the enhancement in the short-circuit current density was in good agreement with the improvement in light absorption in the superstructured active layer, demonstrating a positive impact of the superstructures on the photovoltaic performance of hybrid solar cells.
Keywords: absorption; energy conversion; hierarchical structures; light scattering; solar cells.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.