mTOR inhibition enhances efficacy of dasatinib in ABL-rearranged Ph-like B-ALL

Oncotarget. 2018 Jan 6;9(5):6562-6571. doi: 10.18632/oncotarget.24020. eCollection 2018 Jan 19.

Abstract

High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) include Philadelphia chromosome-positive (Ph+) B-ALL driven by the BCR-ABL1 oncogene and a more recently identified subtype known as BCR-ABL-like or Ph-like B-ALL. A hallmark of both Ph+ and Ph-like B-ALL is constitutive activation of tyrosine kinase signaling that is potentially targetable with tyrosine kinase inhibitors (TKIs). B-ALL cells also receive extracellular signals from the microenvironment that can maintain proliferation and survival following treatment with TKIs. Therefore, there is strong rationale for combining TKIs with other therapies targeting signal transduction pathways. Here we show that combinations of the ABL-directed TKI dasatinib with mTOR kinase inhibitors (TOR-KIs) are more effective than TKI alone against patient-derived Ph-like B-ALL cells harboring rearrangements of ABL1 or ABL2. We also report the establishment of a new human Ph-like B-ALL cell line that is stromal cell-independent in vitro and can be used for xenograft experiments in vivo. These findings provide rationale for clinical testing of TKI plus TOR-KIs in children and adults with Ph-like B-ALL and a new experimental tool to test promising therapeutic strategies in this poor prognosis subtype of B-ALL.

Keywords: acute leukemia; animal model; childhood leukemia; leukemia therapy; tyrosine kinases.