The bacterial pathogen Streptococcus pneumoniae is a major public health concern, being responsible for more than 1.5 million deaths annually through pneumonia, meningitis, and septicemia. Available vaccines target only a subset of serotypes, so vaccination is often accompanied by a rise in the frequency of nonvaccine serotypes. Epidemiological studies suggest that such a change in serotype frequencies is often coupled with an increase of antibiotic resistance among nonvaccine serotypes. Building on previous multilocus models for bacterial pathogen population structure, we have developed a theoretical framework incorporating variation of serotype and antibiotic resistance to examine how their associations may be affected by vaccination. Using this framework, we find that vaccination can result in a rapid increase in the frequency of preexisting resistant variants of nonvaccine serotypes due to the removal of competition from vaccine serotypes.
Keywords: Streptococcus pneumoniae; antibiotic resistance; ecological competition; epidemiology; mathematical model.