Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A

Cardiovasc Res. 2018 Jun 1;114(7):992-1005. doi: 10.1093/cvr/cvy055.

Abstract

Aims: Cell therapy trials using cardiac-resident progenitor cells (CPCs) and bone marrow-derived mesenchymal stem/progenitor cells (BMCs) in patients after myocardial infarction have provided encouraging results. Exosomes, nanosized extracellular vesicles of endosomal origin, figure prominently in the bioactivities of these cells. However, a head-to-head comparison of exosomes from the two cell types has not been performed yet.

Methods and results: CPCs and BMCs were derived from cardiac atrial appendage specimens and sternal bone marrow, respectively, from patients (n = 20; age, 69.9 ± 10.9) undergoing heart surgery for aortic valve disease and/or coronary artery disease. Vesicles were purified from cell conditioned media by centrifugation/filtration and ultracentrifugation. Vesicle preparations were predominantly composed of exosomes based on particle size and marker expression (CD9, CD63, CD81, Alix, and TSG-101). CPC-secreted exosomes prevented staurosporine-induced cardiomyocyte apoptosis more effectively than BMC-secreted exosomes. In vivo, CPC-secreted exosomes reduced scar size and improved ventricular function after permanent coronary occlusion in rats more efficiently than BMC-secreted exosomes. Both types of exosomes stimulated blood vessel formation. CPC-secreted exosomes, but not BMC-derived exosomes, enhanced ventricular function after ischaemia/reperfusion. Proteomics profiling identified pregnancy-associated plasma protein-A (PAPP-A) as one of the most highly enriched proteins in CPC vs. BMC exosomes. The active form of PAPP-A was detected on CPC exosome surfaces. These vesicles released insulin-like growth factor-1 (IGF-1) via proteolytic cleavage of IGF-binding protein-4 (IGFBP-4), resulting in IGF-1 receptor activation, intracellular Akt and ERK1/2 phosphorylation, decreased caspase activation, and reduced cardiomyocyte apoptosis. PAPP-A knockdown prevented CPC exosome-mediated cardioprotection both in vitro and in vivo.

Conclusion: These results suggest that CPC-secreted exosomes may be more cardioprotective than BMC-secreted exosomes, and that PAPP-A-mediated IGF-1 release may explain the benefit. They illustrate a general mechanism whereby exosomes may function via an active protease on their surface, which releases a ligand in proximity to the transmembrane receptor bound by the ligand.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Animals
  • Apoptosis
  • Atrial Appendage / cytology
  • Cell Line
  • Culture Media, Conditioned / metabolism
  • Exosomes / metabolism
  • Exosomes / transplantation*
  • Female
  • Humans
  • Insulin-Like Growth Factor I / metabolism
  • Male
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells* / metabolism
  • Mice
  • Middle Aged
  • Myocardial Ischemia / metabolism
  • Myocardial Ischemia / pathology
  • Myocardial Ischemia / physiopathology
  • Myocardial Ischemia / surgery*
  • Myocardial Reperfusion Injury / metabolism
  • Myocardial Reperfusion Injury / pathology
  • Myocardial Reperfusion Injury / physiopathology
  • Myocardial Reperfusion Injury / surgery*
  • Myocardium / metabolism
  • Myocardium / pathology
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / transplantation*
  • Phenotype
  • Pregnancy-Associated Plasma Protein-A / genetics
  • Pregnancy-Associated Plasma Protein-A / metabolism*
  • Rats, Wistar
  • Recovery of Function
  • Signal Transduction
  • Ventricular Function, Left

Substances

  • Culture Media, Conditioned
  • IGF1 protein, human
  • Insulin-Like Growth Factor I
  • Pregnancy-Associated Plasma Protein-A
  • PAPPA protein, human