Objective: Immunosuppressive biologics are used in the management of RA and additional immunomodulators are under investigation including modulators of the CD40/CD40 ligand (CD40L) costimulation pathway. Tampering with immune function can have unanticipated skeletal consequences due to disruption of the immuno-skeletal interface, a nexus of shared cells and cytokine effectors serving discrete functions in both immune and skeletal systems. In this study, we examined the effect of MR1, a CD40L neutralizing antibody, on physiological bone remodelling in healthy mice.
Methods: Female C57BL6 mice were treated with MR1 and BMD was quantified by dual energy X-ray absorptiometry and indices of trabecular bone structure were quantified by micro-CT. Serum biochemical markers were used to evaluate bone turnover and formation indices by histomorphometry.
Results: Unexpectedly, MR1 stimulated significant accretion of BMD and trabecular bone mass in the spine, but not in long bones. Surprisingly, bone accretion was accompanied by a significant increase in bone formation, rather than suppression of bone resorption. Mechanistically, MR1-induced bone accrual was associated with increased Treg development and elevated production of cytotoxic T lymphocyte antigen 4, a costimulation inhibitor that promotes T cell anergy and CD8+ T cell expression of the bone anabolic ligand Wnt-10b.
Conclusion: Our studies reveal an unexpected bone anabolic activity of pharmacological CD40L suppression. Therapeutic targeting of the CD40L pathway may indeed have unforeseen consequences for the skeleton, but may also constitute a novel strategy to promote bone formation to ameliorate osteoporotic bone loss and reduce fracture risk in the axial skeleton.