Immunoglobulin A (IgA) nephropathy (IgAN), the most common glomerulonephritis worldwide, is characterized by IgA depositions in the kidney. Deficiency of CD37, a leukocyte-specific tetraspanin, leads to spontaneous development of renal pathology resembling IgAN. However, the underlying molecular mechanism has not been resolved. Here we found that CD37 expression on B cells of patients with IgAN was significantly decreased compared to B cells of healthy donors. Circulating interleukin (IL)-6 levels, but not tumor necrosis factor-α or IL-10, were elevated in Cd37-/- mice compared to wild-type mice after lipopolysaccharide treatment. Cd37-/- mice displayed increased glomerular neutrophil influx, immune complex deposition, and worse renal function. To evaluate the role of IL-6 in the pathogenesis of accelerated renal pathology in Cd37-/-mice, we generated Cd37xIl6 double-knockout mice. These double-knockout and Il6-/- mice displayed no glomerular IgA deposition and were protected from exacerbated renal failure following lipopolysaccharide treatment. Moreover, kidneys of Cd37-/- mice showed more mesangial proliferation, endothelial cell activation, podocyte activation, and segmental podocyte foot process effacement compared to the double-knockout mice, emphasizing that IL-6 mediates renal pathology in Cd37-/- mice. Thus, our study indicates that CD37 may protect against IgA nephropathy by inhibition of the IL-6 pathway.
Keywords: CD37; IL-6; IgA nephropathy; glomerulonephritis.
Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.