Photoactive yellow protein (PYP) induces negative phototaxis in Halorhodospira halophila via photoactivation triggered by light-mediated chromophore isomerization. Chromophore isomerization proceeds via a volume-conserving isomerization mechanism due to the hydrogen-bond network and steric constraints inside the protein, and causes significant conformational changes accompanied by N-terminal protrusion. However, it is unclear how the structural change of the chromophore affects the remote N-terminal domain. To understand photocycle-related structural changes, we investigated the structural aspect of chromophore removal in PYP because it possesses a disrupted hydrogen-bond network similar to that in photocycle intermediates. A comparison of the structural aspects with those observed in the photocycle would give a clue related to the structural change mechanism in the photocycle. Chromophore removal effects were assessed via UV-vis spectroscopy, circular dichroism, and X-ray solution scattering. Molecular shape reconstruction and an experiment-restrained rigid-body molecular dynamics simulation based on the scattering data were performed to determine protein shape, size, and conformational changes upon PYP bleaching. Data show that chromophore removal disrupted the holo-PYP structure, resulting in a small N-terminal protrusion, but the extent of conformational changes was markedly less than those in the photocycle. This indicates that disruption of the hydrogen-bond network alone in bleached PYP does not induce the large conformational change observed in the photocycle, which thus must result from the organized structural transition around the chromophore triggered by chromophore photoisomerization along with disruption of the hydrogen-bond network between the chromophore and the PYP core.