Effects of the ortho-quinone and catechol of the antitumor drug VP-16-213 on the biological activity of single-stranded and double-stranded phi X174 DNA

Biochem Pharmacol. 1988 Oct 1;37(19):3579-89. doi: 10.1016/0006-2952(88)90388-7.

Abstract

We have studied the effects of the recently reported two new metabolites of the antitumor agent VP-16-213, the ortho-dihydroxy derivative or catechol and the ortho-quinone, on the biological activity of single-stranded and double-stranded phi X174 DNA, the binding of the metabolites to calf thymus DNA and the conversion of the catechol into the ortho-quinone. Evidence was obtained for the oxidation of the catechol into the ortho-quinone and for the fact that the ortho-quinone is the metabolite of VP-16-213 responsible for its binding to rat liver microsomal proteins. The catechol and ortho-quinone of VP-16-213 were found to bind 7-9 times more strongly to calf thymus DNA than VP-16-213 itself. In contrast to the parent compound VP-16-213, the catechol as well as the ortho-quinone inactivated both single-stranded (ss) and double-stranded (RF) biologically active phi X174 DNA. The mean T37-values for inactivation of ss and RF phi X174 DNA by 2.2 x 10(-4)M catechol at 37 degrees and pH 7.4 were 96 and 640 min, respectively. Reduction of the ortho-quinone by NADPH cytochrome P-450 reductase resulted in formation of the catechol. The system ortho-quinone/NADPH cytochrome P-450 reductase inactivated ss phi X174 DNA with a mean T37-value of 454 min, and this inactivation was inhibited by DMSO. The mean T37-value for inactivation of ss phi X174 DNA by 1.8 x 10(-4) M ortho-quinone at 37 degrees and pH 4.0 was 24 min. The chemical stability of the ortho-quinone and the extent of inactivation of ss phi X174 DNA by the ortho-quinone were both pH-dependent: at higher pH the ortho-quinone was less stable and gave less inactivation of DNA. The aqueous decomposition product(s) of the ortho-quinone formed at pH 7.4 inactivated ss phi X174 DNA with a mean T37-value of 175 min. The rate of inactivation of RF phi X174 DNA by the ortho-quinone at pH 4.0 was twice as low as the rate of inactivation of ss phi X174 DNA: T37 = 49 min. When using excision repair deficient E. coli mutants (uvrA- or uvrC-), a higher inactivation of RF phi X174 DNA was found: T37 = 29 min for uvrA- E. coli, indicating that a part of the DNA damage introduced by the incubation with ortho-quinone is removed by excision repair.(ABSTRACT TRUNCATED AT 400 WORDS)

MeSH terms

  • Animals
  • Bacteriophage phi X 174 / drug effects
  • Catechols / pharmacology*
  • DNA Damage
  • DNA, Single-Stranded / drug effects
  • DNA, Viral / drug effects*
  • DNA, Viral / metabolism
  • Etoposide / metabolism*
  • Etoposide / pharmacology
  • Hydrogen-Ion Concentration
  • Male
  • Oxidation-Reduction
  • Protein Binding
  • Quinones / pharmacology*
  • Rats
  • Rats, Inbred Strains

Substances

  • Catechols
  • DNA, Single-Stranded
  • DNA, Viral
  • Quinones
  • Etoposide
  • catechol