This paper presents an investigation of how different culture media (i.e. basal and osteogenic media) affect the nanomechanical properties and microstructure of the mineralized matrix produced by the human mesenchymal stem cell line Y201, from both an experimental and theoretical approach. A bone nodule (i.e. mineralized matrix) cultured from basal medium shows a more anisotropic microstructure compared to its counterpart cultured from an osteogenic medium. As confirmed by finite element simulations, this anisotropic microstructure explains the bimodal distribution of the corresponding mechanical properties very well. The overall nanomechanical response of the bone nodule from the osteogenic medium is poorer compared to its counterpart from the basal medium. The bone nodules, from both basal and osteogenic media, have shown reverse aging effects in terms of mechanical properties. These are possibly due to the fact that cell proliferation outcompetes the mineralization process.
Keywords: Biological materials; Finite element modelling; Mesenchymal stem cells; Nanomechanical properties.
Copyright © 2018 Elsevier B.V. All rights reserved.