The use of nanoparticles in plant protection may reduce pesticide usage and contamination and increase food security. In this study, three-week-old Solanum lycopersicum seedlings were exposed, by root or foliar pathways, to CeO2 nanoparticles and cerium acetate at 50 and 250 mg/L prior to transplant into sterilized soil. One week later, the soil was inoculated with the fungal pathogen Fusarium oxysporum f. sp. lycopersici (1 g/kg), and the plants were cultivated to maturity in a greenhouse. Disease severity, biomass/yield, and biochemical and physiological parameters were analyzed in harvested plants. Disease severity was significantly reduced by 250 mg/L of nano-CeO2 and CeAc applied to the soil (53% and 35%, respectively) or foliage (57% and 41%, respectively), compared with non-treated infested controls. Overall, the findings show that nano-CeO2 has potential to suppress Fusarium wilt and improve the chlorophyll content in tomato plants.
Keywords: Fusarium wilt; nano-CeO2; nanofertilizer; nanopesticide; tomato.