Analytical connection between thresholds and immunization strategies of SIS model in random networks

Chaos. 2018 May;28(5):051101. doi: 10.1063/1.5030908.

Abstract

Devising effective strategies for hindering the propagation of viruses and protecting the population against epidemics is critical for public security and health. Despite a number of studies based on the susceptible-infected-susceptible (SIS) model devoted to this topic, we still lack a general framework to compare different immunization strategies in completely random networks. Here, we address this problem by suggesting a novel method based on heterogeneous mean-field theory for the SIS model. Our method builds the relationship between the thresholds and different immunization strategies in completely random networks. Besides, we provide an analytical argument that the targeted large-degree strategy achieves the best performance in random networks with arbitrary degree distribution. Moreover, the experimental results demonstrate the effectiveness of the proposed method in both artificial and real-world networks.