Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome

Brain Behav Immun. 2018 Oct:73:450-469. doi: 10.1016/j.bbi.2018.06.007. Epub 2018 Jun 15.

Abstract

Werner syndrome (WS) is a premature aging disorder caused by mutations in a RecQ-family DNA helicase, WRN. Mice lacking part of the helicase domain of the WRN orthologue exhibit many phenotypic features of WS, including metabolic abnormalities and a shorter lifespan. Yet, little is known about the impact of WRN mutations on the central nervous system in both humans and mouse models of WS. In the current study, we have performed a longitudinal behavioral assessment on mice bearing a Wrn helicase deletion. Behavioral tests demonstrated a loss of motor activity and coordination, reduction in perception, increase in repetitive behavior, and deficits in both spatial and social novelty memories in Wrn mutant mice compared to age-matched wild type mice. These neurological deficits were associated with biochemical and histological changes in the brain of aged Wrn mutant mice. Microglia, resident immune cells that regulate neuronal plasticity and function in the brain, were hyper-ramified in multiple regions involved with the behavioral deficits of Wrn mutant mice. Furthermore, western analyses indicated that Wrn mutant mice exhibited an increase of oxidative stress markers in the prefrontal cortex. Supporting these findings, electron microscopy studies revealed increased cellular aging and oxidative stress features, among microglia and neurons respectively, in the prefrontal cortex of aged Wrn mutant mice. In addition, multiplex immunoassay of serum identified significant changes in the expression levels of several pro- and anti-inflammatory cytokines. Taken together, these findings indicate that microglial dysfunction and neuronal oxidative stress, associated with peripheral immune system alterations, might be important driving forces leading to abnormal neurological symptoms in WS thus suggesting potential therapeutic targets for interventions.

Keywords: Behavior; Brain; Cytokines; Microglia; Mouse aging; Neuron; Oxidative stress; Werner syndrome.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cellular Senescence / physiology
  • DNA Damage / physiology
  • Disease Models, Animal
  • Female
  • Longitudinal Studies
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microglia / metabolism
  • Motor Activity / genetics
  • Motor Activity / physiology
  • Mutant Proteins
  • Neurons / metabolism
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism
  • RecQ Helicases / genetics
  • RecQ Helicases / metabolism
  • Werner Syndrome / genetics*
  • Werner Syndrome / immunology
  • Werner Syndrome / physiopathology
  • Werner Syndrome Helicase / genetics
  • Werner Syndrome Helicase / physiology*

Substances

  • Mutant Proteins
  • Reactive Oxygen Species
  • RecQ Helicases
  • Werner Syndrome Helicase
  • Wrn protein, mouse

Grants and funding