Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time

PLoS One. 2018 Jul 10;13(7):e0200274. doi: 10.1371/journal.pone.0200274. eCollection 2018.

Abstract

Ecological research suggests increased diversity may improve ecosystem services, as well as yield stability; however, such theories are sometimes disproven by agronomic research, particularly at higher diversity levels. We conducted a meta-analysis on 2,753 studies in 48 articles published over the last 53 years to test: if biological N2 fixation (BNF) supplies adequate nitrogen (N) for plant growth relative to synthetic fertilizers; how crop physiological traits affect legume-grass symbiosis; and, how cultural practices affect BNF over a range of soils and climates overtime (in polycultures versus sole grasslands). Globally, net primary productivity (NPP; total aboveground production response of grass and legume in higher-diversity treatments) increased 44% via legume associations relative to sole grass controls (including both with and without N fertilizer). Several moderating variables affected NPP including: (i) plant photosynthetic pathway (mixtures of C3 grasses resulted in a 57% increase in NPP, whereas mixtures of C4 grasses resulted in a 31% increase; similarly cool-season legumes increased NPP 52% compared to a 27% increase for warm-season legumes relative to grasslands without diversity); (ii) legume life cycle [NPP response for perennial legume mixtures was 50% greater than sole grass controls, followed by a 28% increase for biennial, and a 0% increase for annual legumes)]; and, (iii) species richness (one leguminous species in a grassland agroecosystem resulted in 52% increase in NPP, whereas >2 legumes resulted in only 6% increases). Temporal and spatial effect sizes also influenced facilitation, considering facilitation was greatest (114% change) in Mediterranean climates followed by oceanic (84%), and tropical savanna (65%) environments; conversely, semiarid and subarctic systems had lowest Rhizobium-induced changes (5 and 0% change, respectively). Facilitation of grass production by legumes was also affected by soil texture. For example, a 122% NPP increase was observed in silt clay soils compared to 14% for silt loam soils. Niche complementarity effects were greatest prior to 1971 (61% change), compared to recent studies (2011-2016; -7% change), likely owing to reduced global sulfur deposition and increased ambient temperatures overtime. These historical trends suggest potential for legume intercrops to displace inorganic-N fertilizer and sustainably intensify global NPP. Results herein provide a framework for ecologists and agronomists to improve crop diversification systems, refine research goals, and heighten BNF capacities in agro-grasslands.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • Crop Production* / statistics & numerical data
  • Fabaceae / physiology
  • Fertilizers
  • Grassland*
  • Nitrogen Fixation
  • Photosynthesis
  • Plant Physiological Phenomena
  • Poaceae / physiology
  • Symbiosis

Substances

  • Fertilizers

Grants and funding

Salaries for authors were provided by the University of Tennessee, Plant Sciences Department (Allen, Toler, and Auge) and the United States Department of Agriculture (Ashworth). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.