Cisplatin-loaded hollow gold nanoparticles for laser-triggered release

Cancer Nanotechnol. 2018;9(1):6. doi: 10.1186/s12645-018-0041-9. Epub 2018 Aug 3.

Abstract

Background: Hollow gold nanoparticles (HGNPs) exposed to near-infrared (NIR) light yield photothermal effects that can trigger a variety of biological effects for potential biomedical applications. However, the mechanism of laser-triggered drug release has not been studied before.

Methods: A tripeptide Ac-Glu-Glu-Cys-NH2 (Ac-EEC) was directly linked to the surface of HGNPs. The EEC-HGNPs conjugate was then complexed with cisplatin Pt(II) to give Ac-EEC(Pt)-HGNPs. Folic acid was introduced to the gold surface of Ac-EEC-HGNPs through a thioctic acid-terminated polyethylene glycol linker (F-PEG-TA) followed by complexation with Pt(II) to give F-Ac-EEC(Pt)-HGNPs. Laser treatment was instituted with a 15-ns pulsed laser at a repetition rate of 10 Hz. The released Pt(II) was quantified by inductively coupled plasma mass spectroscopy, and the nature of the released Pt-containing species was characterized by liquid chromatography-mass spectroscopy. The cytotoxicity was studied using the MTT assay.

Results: Pt(II) was released from Ac-EEC(Pt)-HGNPs via two modes: (1) sustained release through an inverse ligand exchange reaction with chloride ions and (2) rapid release through cleavage of the Au-S bond between the tripeptide linker and Au surface upon NIR laser irradiation. The folate (F) conjugate of the nanoconstruct, F-Ac-EEC(Pt)-HGNPs, in combination with laser treatment showed a significantly greater effect on cell mortality against folate-overexpressing human epidermoid carcinoma KB cells than F-Ac-ECC(Pt)-HGNPs alone after 24 h of incubation.

Conclusions: These results demonstrate that the photothermal property of HGNPs can be used for dual-modality photothermal therapy and NIR laser-triggered platinum-based chemotherapy.

Keywords: Cisplatin; Controlled release; Hollow gold nanoparticles; Near-infrared light; Photothermal conversion.