[Human osteoprotegerin inhibits osteoclasts and promotes hydroxyapatite to repair the mandibular defects in ovariectomized rats]

Hua Xi Kou Qiang Yi Xue Za Zhi. 2018 Aug 1;36(4):367-371. doi: 10.7518/hxkq.2018.04.004.
[Article in Chinese]

Abstract

Objective: This study aims to investigate the effect of human osteoprotegerin (hOPG) gene-modified rat bone marrow mesenchymal stem cells (rBMSCs) combined with hydroxyapatite (HA) scaffolds on the repair of mandibular defects in ovariectomized rats.

Methods: rBMSCs were transfected with adenovirus carrying pDC316-hOPG-EGFP. The expression of hOPG and the inhibition of osteoclast function were detected by Western blot and bone-grinding experiment respectively. The model of mandibular bone defect in rats with osteoporosis was established; HA, untransfected rBMSCs-conjugated HA, and transfected rBMSCs-conjugated HA scaffolds were implanted into the mandibular bone defects. After six weeks, tartrateresistant acid phosphatase staining and hematoxylin-eosin staining were used to observe the number of osteoclasts and repair of bone defect.

Results: Adenovirus carrying hOPG gene in vitro were successfully transfected into rBMSCs. The hOPG with anti-osteoclast activity was expressed by hOPG-rBMSCs, and rBMSCs expressing hOPG combined with HA scaffolds promoted mandibular defect repair.

Conclusions: rBMSCs transfected with hOPG gene inhibited the function of osteoclasts both in vitro and in vivo, and transfected rBMSCs combined with HA scaffolds promoted the repair of mandibular defects in rats with osteoporosis.

目的 探讨转染人骨保护素(hOPG)基因的大鼠骨髓间充质干细胞(rBMSCs)复合羟磷灰石(HA)支架对去势大鼠下颌骨缺损的修复作用。方法 将重组腺病毒pDC316-hOPG-EGFP转染rBMSCs,蛋白质印迹法和骨磨片试验分别检测hOPG的表达水平和抑制破骨细胞功能;构建骨质疏松大鼠模型,分别将HA支架、未转染rBMSCs复合HA支架、转染rBMSCs复合HA支架植入大鼠下颌骨骨缺损,6周后通过抗酒石酸酸性磷酸酶、苏木精-伊红染色检测骨缺损区破骨细胞及骨修复情况。结果 体外携载有hOPG基因的腺病毒成功转染rBMSCs,转染后的rBMSCs表达具有抑制破骨细胞活性功能的hOPG;表达hOPG的rBMSCs复合HA支架后骨缺损处破骨细胞明显减少,成骨增多。结论 转染hOPG基因的rBMSCs在体内外均具有抑制破骨细胞功能的作用,且转染rBMSCs复合HA支架可促进骨质疏松大鼠的下颌骨缺损修复。.

Keywords: bone defect; bone regeneration; gene transfection; osteoporosis; osteoprotegerin.

MeSH terms

  • Animals
  • Disease Models, Animal
  • Durapatite* / pharmacology
  • Humans
  • Mandible
  • Mesenchymal Stem Cells*
  • Osteoclasts*
  • Osteoporosis*
  • Osteoprotegerin* / physiology
  • Ovariectomy
  • Rats

Substances

  • Osteoprotegerin
  • TNFRSF11B protein, human
  • Durapatite

Grants and funding

[基金项目] 国家自然科学基金(31400829);四川省科技创新团队项目(2017TD0016)