Invariant natural killer T (iNKT) cells are activated at sites of local tissue injury, or globally during vaso-occlusive episodes of sickle cell disease (SCD). Tissue damage stimulates production of CD1d-restricted lipid antigens that activate iNKT cells to produce Th1- and Th2-type cytokines. Here, we show that circulating iNKT cells in SCD patients express elevated levels of the ectonucleoside triphosphate diphosphosphohydrolase, CD39, as well the adenosine A2A receptor (A2AR). We also investigated the effects of stimulating cultured human iNKT cells on the expression of genes involved in the regulation of purinergic signaling. iNKT cell stimulation caused induction of ADORA2A, P2RX7, CD38, CD39, ENPP1, CD73, PANX1, and ENT1. Transcription of ADA, which degrades adenosine, was reduced. Induction of CD39 mRNA was associated with increased ecto-ATPase activity on iNKT cells that was blocked by POM1. Exposure of iNKT cells to A2AR agonists during stimulation reduced production of IFN-γ and enhanced production of IL-13 and CD39. Based on these findings, we define "purinergic Th2-type cytokine bias" as an antiinflammatory purinergic response to iNKT cell stimulation resulting from changes in the transcription of several genes involved in purine release, extracellular metabolism, and signaling.
Keywords: Immunology; Inflammation; Innate immunity; NK T cells.