Evaluating the Performance of Non-Hair SSVEP-Based BCIs Featuring Template-Based Decoding Methods

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul:2018:1972-1975. doi: 10.1109/EMBC.2018.8512662.

Abstract

Our previous study has demonstrated the feasibility of employing non-hair-bearing electrodes to build a Steadystate Visual Evoked Potential (SSVEP)-based Brain-Computer Interface (BCI) system, relaxing technical barriers in preparation time and offering an ease-of-use apparatus. The signal quality of the SSVEPs and the resultant performance of the non-hair BCI, however, did not close upon those reported in the state-of-the-art BCI studies based on the electroencephalogram (EEG) measured from the occipital regions. Recently, advanced decoding algorithms such as task-related component analysis have made a breakthrough in enhancing the signal quality of the occipital SSVEPs and the performance of SSVEP-based BCIs in a well-controlled laboratory environment. However, it remains unclear if the advanced decoding algorithms can extract highfidelity SSVEPs from the non-hair EEG and enhance the practicality of non-hair BCIs in real-world environments. This study aims to quantitatively evaluate whether, and if so, to what extent the non-hair BCIs can leverage the state-of-art decoding algorithms. Eleven healthy individuals participated in a 5-target SSVEP BCI experiment. A high-density EEG cap recorded SSVEPs from both hair-covered and non-hair-bearing regions. By evaluating and demonstrating the accessibility of nonhair-bearing behind-ear signals, our assessment characterized constraints on data length, trial numbers, channels, and their relationships with the decoding algorithms, providing practical guidelines to optimize SSVEP-based BCI systems in real-life applications.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Brain-Computer Interfaces
  • Electroencephalography
  • Evoked Potentials, Visual*
  • Hair
  • Humans
  • Photic Stimulation