Regional lung ventilation is modulated by the spatiotemporal distribution of alveolar distending forces. During positive-pressure ventilation, regional transmission of airway pressure (Paw) to the pleural surface may vary with ventilatory frequency (f), thus changing interregional airflow distribution. Pendelluft phenomena may result owing to selective regional hyperventilation or phase differences in alveolar distension. To define the effects of f on regional alveolar distension during positive-pressure ventilation, we compared regional pleural pressure (Ppl) swings from expiration to inspiration (delta Ppl) and end-expiratory Ppl over the f range 0-150 min-1 in anesthetized, paralyzed, close-chested dogs with normal lungs. We inserted six pleural balloon catheters to analyze Ppl distribution along three orthogonal axes of the right hemithorax. Increases in regional Ppl were synchronously coupled with inspiratory increases in Paw regardless of f. However, at a constant tidal volume and percent inspiratory time, end-expiratory Paw and Ppl increased in all regions once a f threshold was reached (P less than 0.01). Supradiaphragmatic delta Ppl were less than in other regions (P less than 0.05), but thoracoabdominal binding abolished this difference by decreasing thoracoabdominal compliance. We conclude that the distribution of forces determining dynamic regional alveolar distension are temporally synchronous but spatially asymmetric during positive-pressure ventilation at f less than or equal to 150/min.