The human epidermal growth factor 2 (HER2) gene undergoes various mutations that could alter its activity or respond to the antibody therapies. Cetuximab, a known anti-EGFR monoclonal antibody (mAB), is widely administered in metastatic colorectal cancer (mCRC) cases. Here we identified mCRC patients who did not respond to cetuximab (500 mg/m2 , q2w) after fluoropyrimidine/oxaliplatin regimen failure. Tumor samples were examined with immunohistochemistry for protein distribution, polymerase chain reaction (PCR) sequencing for mutation detection and real-time PCR for mRNA expression pattern analysis between cetuximab sensitive and resistance patients. The conformational differences of normal and mutated protein structures were predicted by bioinformatics analysis. The 5-year survival rates of target groups were estimated using the Kaplan-Meier method. Immunohistochemistry showed that all cases had high level of HER2 protein. No K-Ras or B-Raf mutation was observed among the study population; however, cetuximab resistance patients harbored a somatic mutation R784G at the exon 20 region of HER2 coding sequence. According to bioinformatics analysis, this mutation caused a notable misfold in protein conformation. Meanwhile, survival analysis showed R784G mutated mCRC patients had shortened survival rate compared with the mCRC cases with wild-type HER2. Collectively, these data report a new mechanism of resistance to cetuximab and might be applicable in modifying new therapeutic strategies for HER2 involved cancers.
Keywords: HER2 somatic mutation; cetuximab therapy failure; metastatic colorectal cancer.
© 2018 Wiley Periodicals, Inc.