Nucleolipids of the Nucleoside Antibiotics Formycins A and B: Synthesis and Biomedical Characterization Particularly Using Glioblastoma Cells

Chem Biodivers. 2019 Apr;16(4):e1900012. doi: 10.1002/cbdv.201900012. Epub 2019 Apr 2.

Abstract

Two lipophilic derivatives of formycin A (1) and formycin B (5) carrying an O-2',3'-(ethyl levulinate) ketal group have been prepared. These were base-alkylated at N(1) (for 1) and N(1) and N(6) (for 5) with both isopentenyl and all-trans-farnesyl residues. Upon the prenylation, side reactions were observed, resulting in the formation of nucleolipids with a novel tricyclic nucleobase (→4a, 4b). In the case of formycin B, O-2',3'-(ethyl levulinate) (6) farnesylation gave the double prenylated nucleolipid 7. All new compounds were characterized by 1 H-, 13 C-, UV/VIS and fluorescence spectroscopy, by ESI-MS spectrometry and/or by elemental analysis. Log P determinations between water and octanol as well as water and cyclohexane of a selection of compounds allowed qualitative conclusions concerning their potential blood-brain barrier passage efficiency. All compounds were investigated in vitro with respect to their cytotoxic activity toward rat malignant neuroectodermal BT4Ca as well as against a series of human glioblastoma cell lines (GOS 3, U-87 MG and GBM 2014/42). In order to differentiate between anticancer and side effects of the novel nucleolipids, we also studied their activity on PMA-differentiated human THP-1 macrophages. Here, we show that particularly the formycin A derivative 3b possesses promising antitumor properties in several cancer cell lines with profound cytotoxic effects partly on human glioblastoma cells, with a higher efficacy than the chemotherapeutic drug 5-fluorouridine.

Keywords: cytotoxicity; drug profiling; formycins A and B; glioblastoma; nucleolipids; synthesis design.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / chemical synthesis
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Antineoplastic Agents, Phytogenic / chemical synthesis
  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Formycins / chemical synthesis
  • Formycins / chemistry
  • Formycins / pharmacology*
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Rats
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Anti-Bacterial Agents
  • Antineoplastic Agents, Phytogenic
  • Formycins
  • formycin B
  • formycin