Objectives: Peroxisomes play a crucial role in lipid and reactive oxygen species metabolism, but their importance for pancreatic β-cell functioning is presently unknown. To examine the contribution of peroxisomal metabolism to β-cell homeostasis in mice, we inactivated PEX5, the import receptor for peroxisomal matrix proteins, in an inducible and β-cell restricted manner (Rip-Pex5-/- mice).
Methods: After tamoxifen-induced recombination of the Pex5 gene at the age of 6 weeks, mice were fed either normal chow or a high-fat diet for 12 weeks and were subsequently phenotyped.
Results: Increased levels of very long chain fatty acids and reduced levels of plasmalogens in islets confirmed impairment of peroxisomal fatty acid oxidation and ether lipid synthesis, respectively. The Rip-Pex5-/- mice fed on either diet exhibited glucose intolerance associated with impaired insulin secretion. Ultrastructural and biochemical analysis revealed a decrease in the density of mature insulin granules and total pancreatic insulin content, which was further accompanied by mitochondrial disruptions, reduced complex I activity and massive vacuole overload in β-cells. RNAseq analysis suggested that cell death pathways were affected in islets from HFD-fed Rip-Pex5-/- mice. Consistent with this change we observed increased β-cell apoptosis in islets and a decrease in β-cell mass.
Conclusions: Our data indicate that normal peroxisome metabolism in β-cells is crucial to preserve their structure and function.
Keywords: Apoptosis; Diabetes; High-fat diet; Islet; Peroxisome; β-cell.
Copyright © 2019 The Authors. Published by Elsevier GmbH.. All rights reserved.