Neuropathic itch is clinically important but has received much less attention as compared to neuropathic pain. In the past decade, itch-specific pathways have been characterized on a cellular and molecular level, but their exact role in the pathophysiology of neuropathic itch is still unclear. Traditionally, mutually exclusive theories for itch such as labeled line, temporal/spatial pattern, or intensity theory have been proposed, and experimental studies in mice mainly favor the specificity theory of itch. By contrast, results in humans also suggest a role for spatial and temporal patterns in neuropathic itch. Rarefication of skin innervation in neuropathy could provide a "spatial contrast" discharge pattern, and axotomy could induce de novo expression of the itch-specific spinal neuropeptide, gastrin-releasing peptide, in primary afferent nociceptors, thereby modulating itch processing in the dorsal horn. Thus, clinical neuropathy may generate itch by changes in the spatial and temporal discharge patterns of nociceptors, hijacking the labeled line processing of itch and abandoning the canonical scheme of mutual exclusive itch theories. Moreover, the overlap between itch and pain symptoms in neuropathy patients complicates direct translation from animal experiments and, on a clinical level, necessitates collaboration between medical specialities, such as dermatologists, anesthesiologists, and neurologists.