To boost electro-optic (EO) performance, a series of multichromophore dendrimers have been developed based on higher hyperpolarizability (CLD-type) chromophore cores that have been used previously (FTC-type dendrimers). The multichromophore dendrimers were molecularly engineered to have either three arms, two arms, or one arm; long or short linkers; and a fluorinated dendron (FD) or tert-butyldiphenylsilyl (TBDPS) shell. The EO performance obtained by FDSD (poling efficiency = 1.60 nm2 V-2), based on succinic diester linkers, was higher than the analogue with longer adipic diester linkers and higher than the analogs with fewer chromophore moieties. Due to the shorter succinic diester linker and improved site isolation, the dendrimer chromophore with TBDPS groups exhibited enhanced glass-transition temperature ( Tg = 108 °C) and comparable poling efficiency (1.62 nm2 V-2) to the FD-containing version. These neat EO dendrimers have a higher index of refraction ( n = 1.75-1.84 at 1310 nm) than guest-host polymeric EO materials ( n ≈ 1.6, 1310 nm) and FTC-type EO dendrimers ( n = 1.73, 1310 nm), which is important, because a key metric for Mach-Zehnder modulators is proportional to n3. In addition, binary chromophore organic glasses (BCOGs) were prepared by doping a secondary EO chromophore at 25 wt % into neat dendrimers. Enhancements of EO performance were found in all BCOG materials compared with neat dendrimers due to the effect of blending. As a result of increased chromophore density, the n values of the BCOGs improved to 1.81-1.92. One BOCG, in particular, displayed the highest poling efficiency (2.35 nm2 V-2) and largest EO coefficient ( r33) value of 275 pm V-1 at 1310 nm, which represents a high n3 r33 figure-of-merit of 1946 pm V-1. The high poling efficiencies and n3 r33 figure-of-merit combined with excellent film forming confirm these neat dendrimers and BCOGs based on them as promising candidates for incorporation into photonic devices.
Keywords: binary chromophore organic glass; dendrimer; electro-optic; hyperpolarizability; nonlinear optics.