Artemisinin is a sesquiterpene lactone produced by the Chinese traditional herb Artemisia annua and is used for the treatment of malaria. It is known that salicylic acid (SA) can enhance artemisinin content but the mechanism by which it does so is not known. In this study, we systematically investigated a basic leucine zipper family transcription factor, AaTGA6, involved in SA signaling to regulate artemisinin biosynthesis. We found specific in vivo and in vitro binding of the AaTGA6 protein to a 'TGACG' element in the AaERF1 promoter. Moreover, we demonstrated that AaNPR1 can interact with AaTGA6 and enhance its DNA-binding activity to its cognate promoter element 'TGACG' in the promoter of AaERF1, thus enhancing artemisinin biosynthesis. The artemisinin contents in AaTGA6-overexpressing and RNAi transgenic plants were increased by 90-120% and decreased by 20-60%, respectively, indicating that AaTGA6 plays a positive role in artemisinin biosynthesis. Importantly, heterodimerization with AaTGA3 significantly inhibits the DNA-binding activity of AaTGA6 and plays a negative role in target gene activation. In conclusion, we demonstrate that binding of AaTGA6 to the promoter of the artemisinin-regulatory gene AaERF1 is enhanced by AaNPR1 and inhibited by AaTGA3. Based on these findings, AaTGA6 has potential value in the genetic engineering of artemisinin production.
Keywords: Artemisia annua; Artemisinin; salicylic acid; transcription factor.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.